If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2=62
We move all terms to the left:
g^2-(62)=0
a = 1; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·1·(-62)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*1}=\frac{0-2\sqrt{62}}{2} =-\frac{2\sqrt{62}}{2} =-\sqrt{62} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*1}=\frac{0+2\sqrt{62}}{2} =\frac{2\sqrt{62}}{2} =\sqrt{62} $
| 96m^2-24=0 | | 5n+20=4-3n | | 3y+12y=90 | | 4x3+12x2+10x+12=0 | | 17x=-8x^2-12 | | 5x/7x=6 | | -4x-8=42 | | 10g=2/3 | | 46x+88=180 | | (0.1-x)/(0.01+x)=1.096478 | | Y=21x+576 | | Y=21x+575 | | w-3.1=6.4 | | 192t-336=130t | | 4(x-2)-5(2x-6)=8(x+1-2(2x+3) | | 5-3a)-(-4a+6)=(8a+1)-3(2a+3) | | x+5=392482429 | | 4(x-40)=3.3(x+40) | | 410x=328(x+30) | | 82=x*0.926 | | (5-3a)-(-4a+6)=(8a+1)-3(2a+3) | | (x+6)(4x-2)=0 | | 0=-0.5x^2+0.57x+1.5 | | x1/3=8/2 | | x=36/0.40 | | 36=0.4(x) | | 5x+3x+30+2x+10=180.x | | v-7+50=90 | | 4(x+3)+5(x+2)=20 | | 8.3=-1.6c+1.3 | | 4x+12=28+x | | 8x^2=18(252) |